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Abstract
Adversarial training (AT) and its variants are the
most effective approaches for obtaining adversari-
ally robust models. A unique characteristic of AT
is that an inner maximization problem needs to be
solved repeatedly before the model weights can be
updated, which makes the training slow. FGSM
AT significantly improves its efficiency but it fails
when the step size grows. The SOTA GradAlign
makes FGSM AT compatible with a higher step
size, however, its regularization on input gradient
makes it 3 to 4 times slower than FGSM AT. Our
proposed NoiseAug removes the extra computa-
tion overhead by directly regularizing on the input
itself. The key contribution of this work lies in
an empirical finding that single-step FGSM AT is
not as hard as suggested in the past line of work:
noise augmentation is all you need for (FGSM)
fast AT. Towards understanding the success of
our NoiseAug, we perform an extensive analysis
and find that mitigating Catastrophic Overfitting
(CO) and Robust Overfitting (RO) need different
augmentations. Instead of more samples caused
by data augmentation, we identify what makes
NoiseAug effective for preventing CO might lie
in its improved local linearity.

1. Introduction
Deep neural networks are often vulnerable to adversarial
examples (AEs) where the quasi-invisible adversarial pertur-
bation causes misclassification (Szegedy et al., 2013). Early
attempts to improve adversarial robustness include vari-
ous image processing techniques and detection techniques,
however, most of them are found to give a false sense of

*Equal contribution 1Korea Advanced Institute of Science
and Technology, Daejeon, Republic of Korea 2Northwestern
Polytechnical University, Shaanxi, China 3Sichuan University,
Sichuan, China. Correspondence to: Chaoning Zhang <chaon-
ingzhang1990@gmail.com>.

robustness (Carlini & Wagner, 2017; Athalye et al., 2018;
Croce & Hein, 2020). In recent years, there is an emerg-
ing consensus that adversarial training (AT) and its variants
are the most effective approaches that are robust to various
strong white-box attacks, such as PGD attack (Madry et al.,
2018) and AutoAttack (Croce & Hein, 2020). However,
AT is resource-intensive because generating adversarial ex-
amples with the multi-step gradient ascent before training
the network is a heavy computation overhead (Madry et al.,
2018).

To speed up AT, successful attempts range from multi-step
“free” approaches (Shafahi et al., 2019; Zhang et al., 2019) to
single-step FGSM AT (Wong et al., 2020; Andriushchenko
& Flammarion, 2020). FGSM (Goodfellow et al., 2015)
is not a new technique and has been used to improve ad-
versarial robustness in its early development of adversarial
attack and defense. It was previously shown in (Tramèr
et al., 2018) to be not effective against a multi-step PGD
attack. With an appropriate initialization, however, Wong
et al. have shown that FGSM AT achieves reasonable ro-
bustness against PGD attack. Notably, it still suffers from
Catastrophic Overfitting (CO) when the step size grows.

To address the above limitations of FGSM AT, various at-
tempts have been suggested in the literature. For exam-
ple, a straightforward solution to alleviate CO is to use
early stop Wong et al., however, this makes the training pro-
cedure more complex and insufficient training might also
lead to a sub-optimal robust model. To this end, multiple
works (Vivek & Babu, 2020; Andriushchenko & Flammar-
ion, 2020; Chen et al., 2021) have attempted various regu-
larization methods for improving the robustness without the
practice of early stop. However, these regularization meth-
ods often cause extra computation overhead. Our work is
mainly inspired by (Andriushchenko & Flammarion, 2020),
where GradAlign has been proposed to regularize the gradi-
ent similarity between a clean example and a noisy example.
GradAlign helps increase the tolerance of FGSM AT with a
larger step size, such as ε = 16/255. This work is motivated
to search a more simple variant of regularization method
that causes less or no extra computation overhead.
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In this work, we argue that single-step FGSM AT is not as
had hard as suggested by the past line of work (Vivek &
Babu, 2020; Andriushchenko & Flammarion, 2020; Kim
et al., 2020; Chen et al., 2021). The result of our investi-
gation conveys to the community a simple yet non-trivial
message: noise augmentation is all you need for fast ad-
versarial training. This empirical finding motivates us to
improve FGSM with our proposed NoiseAug which causes
zero computation overhead yet outperform other SOTA reg-
ularization methods. Towards understanding why NoiseAug
helps improve FGSM AT, we investigate it from various
perspectives, such as data augmentation and local linear-
ity. Since adding noise to input is one of the most widely
used data augmentation techniques, it might be tempting to
guess that increased training samples due to data augmen-
tation effect help avoid CO. However, this is not supported
by our empirical finding: other types of augmentation that
avoid RO via increasing training samples do not help allevi-
ate CO. Moreover, Through the lens of data augmentation,
our study on CO and RO reveals that they require different
types of augmentation: mitigating RO requires Content-type
augmentation, such as MixUp or CutOut, while CO needs
Noise-type augmentation, such as uniform noise or Gaus-
sian noise. Instead, we find that local linearity constitutes a
better perspective to explain the effectiveness NoiseAug for
mitigating CO. Overall, the contributions of our work are
summarized as follows:

• The key contribution of this work lies in an empiri-
cal finding that CO in single-step FGSM AT can be
avoided by adding noise to images. This finding mo-
tivates a simple yet effective regularization method
for improving FGSM AT. Without any conditional in-
tervention like early stop or additional computation
overhead like GradAlign, our NoiseAug avoids CO
and outperforms existing SOTA methods.

• We perform an extensive analysis to identify the rea-
son why our NoiseAug helps FGSM AT to avoid CO.
Our results show that CO can only be mitigated by
Noise-type augmentation, which contradicts a tempting
guess that increasing training samples helps avoid CO.
Moreover, we show that among all investigated aug-
mentations, only NoiseAug improves local linearity,
which suggests that what makes NoiseAug effective
for preventing CO lies in its improved local linearity.
Finally, we demonstrate that adding images to the input
can improve local linearity is a general phenomenon,
regardless of the specific training setup.

2. Related work
It has been an active topic in the adversarial machine learn-
ing community to make AT more computation efficient.
Here, we summarize the main progress in the past few years.

“Free” to FGSM AT. To make AT more computation effi-
cient, there are two lines of works. Early attempts (Shafahi
et al., 2019; Zhang et al., 2019) investigated the possibil-
ity of “free” adversarial training to achieve robustness with
similar computation overhead as standard training. Another
line of work attempt to minimize the number of steps to gen-
erate the adversarial examples. A major advantage of the
second line of approaches is that it has extremely few param-
eters to tune, which makes it easily compatible with most
training procedures. For example, it can be drastically accel-
erated (Wong et al., 2020) by using standard techniques for
boost training, such as cyclic learning rates (Smith & Topin,
2018) and mixed-precision training (Micikevicius et al.,
2017). In practice, “Free” AT is not really free because their
minibatch replays often require much more training steps
even though it is faster than FGSM-AT for a single training
step. Recently, the trend has shifted from multi-step “free”
AT to single-step FGSM AT.

CO and countermeasures. Since the first success of
FGSM+RS (Wong et al., 2020) to show reasonable robust-
ness against PGD-50-10, multiple works have attempted
to improve FGSM AT with various techniques. (Li et al.,
2020) claims that the success of FGSM-RS lies in improved
success factor to recover from CO and proposed to use
PGD when the CO is detected. (Vivek & Babu, 2020) has
claimed that the CO is caused by model parameter over-
fitting in the early stage, which motivates their dynamic
dropout scheduling. (Vivek & Babu, 2020) has proposed to
regularize the FGSM AT by introducing dropout layer after
each non-linear layer. Specifically, those dropout layers are
initialized with a high dropout probability which is linearly
decayed during the training. (Kim et al., 2020) assumed that
the overfitting is caused by a fixed perturbation magnitude
and thus proposed to search a sample-wise minimum pertur-
bation to avoid CO. Specifically, they set c checkpoints in
the local region to find the smallest perturbation that causes
misclassification. Motivated from an observation that CO
often occurs when the local linearity of the model is low,
(Andriushchenko & Flammarion, 2020) has introduced a
regularization loss (GradAlign) to explicitly maximize local
linearity for avoiding CO. More recently, (Chen et al., 2021)
claims that the plus-minus sign of the higher-order terms is
the underlying cause of CO and proposes a regularization
loss (FLAT) to make the model more locally linear.

3. Background
Standard vs. Adversarial Training. Let’s assume D is a
data distribution with (x, y) pairs and f(·, θ) is a model
parametrized by θ. Standard training (ST) minimizes the
risk of E(x,y)∼D[l(f(x, θ), y)], where l indicates the cross-
entropy loss. By contrast, adversarial training (AT) finds
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model parameter θ to optimize an adversarial risk:

argmin
θ

E(x,y)∼D

[
max
δ∈S

l(f(x+ δ; θ), y)

]
︸ ︷︷ ︸

inner maximization︸ ︷︷ ︸
outer minimization

, (1)

where S denotes the allowed perturbation budget that is a
typically lp norm-bounded ε. A key difference between ST
and AT is that AT generates adversarial examples as an inner
maximization problem before optimizing the model weights.
Following the convention in (Andriushchenko & Flammar-
ion, 2020), we mainly study AT under the constraint of
ε = 8/255 or ε = 16/255.

Algorithm 1 Classical PGD-N AT for a network fθ with T
epochs, given some radius ε, adversarial step size α and N
PGD steps and a dataset of size M

for t = 1 . . . T do
for i = 1 . . .M do
δ = 0 or δ = Uniform(−ε, ε) // δ initialization
for j = 1 . . . N do
δ = δ + α · sign(∇δ`(fθ(xi + δ), yi))
δ = max(min(δ, ε),−ε)

end for
θ = θ −∇θ`(fθ(xi + δ), yi) // Outer minimization

end for
end for

PGD vs. FGSM AT. As discussed above, a unique nature of
AT lies in solving an inner maximization problem. Projected
gradient decent (PGD) is the most widely used approach for
solving this problem. A critical hyperparameter in PGD-AT
is the number of steps for generating adversarial examples.
Following the convention in prior works (Wong et al., 2020;
Andriushchenko & Flammarion, 2020), we term it PGD-N
when N steps are used. The classical PGD-N AT is shown
in Algorithm 1. FGSM can be seen as a special case of
PGD-N when N is set to 1 and we stick to term it FGSM
AT. A major advantage of applying FGSM is that it makes
the slow inner maximization more computation efficient.
In Algorithm 1, the to-be-optimized perturbation δ in the
inner-maximization by default starts with zero, but can be
optionally initialized in a random manner. Since the advent
of FGSM, it has been widely used for training adversari-
ally robust models (Goodfellow et al., 2015; Tramèr et al.,
2018). For example, (Goodfellow et al., 2015) shows that
FGSM AT is an effective way to train a model robust to
their proposed FGSM attack. Overfitting in AT. Since the
model is only trained on adversarial examples generated
by FGSM, it has a risk of being overfitted to FGSM while
losing its robustness against stronger attacks (PGD attack
for instance). In practical FGSM AT, its robustness against
PGD attack might suddenly drop to zero, which is identified

as a failure mode termed as CO. On the other hand, (Rice
et al., 2020) has reported that the robustness on the eval-
uation dataset decreases in the later stage of training, and
termed this phenomenon RO (RO). CO and RO are two in-
triguing phenomena in AT, yet there is no consensus on the
underlying reason.

4. How to avoid CO in FGSM fast AT?
4.1. Prior attempts

First yet the limited success of FGSM+RS. FGSM AT
was long dismissed as ineffective against PGD attack, a
seminal work (Wong et al., 2020) has shown that this is
not necessarily true. Their key finding is that a proper ini-
tialization of perturbation can help FGSM AT avoid CO
and achieve reasonable robustness against a PGD attack.
FGSM with such initialized perturbation in the random step
(RS) is termed FGSM-RS following (Andriushchenko &
Flammarion, 2020). Even though FGSM+RS shows suc-
cess for ε = 8/255, CO still occurs when the step size
grows. For example, (Wong et al., 2020) has reported that
CO still occurs when the step size α is larger than 11/255,
which hinders its use for a larger ε (`∞ 16/255 for instance).
Furthermore, (Wong et al., 2020) has also alleviated CO
by early stop which is also a common practice to avoid
overfitting in standard training. However, inefficient train-
ing often leads to a sub-optimal robust model as suggested
in (Andriushchenko & Flammarion, 2020).

Gradient-based regularization. Most attempts (Vivek &
Babu, 2020; Kim et al., 2020; Chen et al., 2021) for im-
proving FGSM AT are performed by limiting ε to 8/255,
which renders FGSM AT for a large ε like 16/255 remain
a challenging problem. Without the practice of early stop,
(Andriushchenko & Flammarion, 2020) is the first yet so far
the only one found to report success of FGSM AT against
PGD attack with ε = 16/255. The core of their method
is a regularization loss GradAlign which is termed as such
due to its goal for increasing the gradient alignment, i.e. a
metric to measure local linearity of model. Despite its suc-
cess, as acknowledged in (Andriushchenko & Flammarion,
2020), a major drawback of GradAlign is that the regu-
larization on the input gradient yields heavy computation
overhead compared with FGSM AT, which makes it 3 to 4
times slower than FGSM AT. Beyond GradAlign, their work
also investigates other gradient-based penalties, such as cur-
vature regularization (Demontis et al., 2019) and l2-based
gradient norm regularization, both of which consistently per-
form less well than GradAlign. For future directions, (An-
driushchenko & Flammarion, 2020) has suggested speed-
ing up GradAlign with approaches like parallelization or
coming up with other regularization methods. In the follow-
ing, we report the findings of our investigation to improve
GradAlign.
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Figure 1. Comparison among GradAlign, LogitAlign with KL reg-
ularization, and NoiseAug with various λ. Dash line indicates
clean accuracy and solid line indicates accuracy under the attack
of PGD-50-10.

4.2. Our findings

GradAlign to LogitAlign. This work focuses on exploring
alternative regularization methods that require less or zero
computation overhead. In essence, GradAlign encourages
the model to behave similarly to clean example (x) and cor-
responding noisy example (x+ η) for input gradient. Since
the input gradient can be used for generating adversarial
examples with FGSM, we conjecture that increasing the
similarity of the output logit for adversarial examples gen-
erated from clean and corresponding noisy samples might
achieve an equivalent effect. Specifically the total loss with
a KL regularization is shown as:

l(f(x+δ1; θ), y)+KL(f(x+δ1; θ), f(x+η+δ2; θ)), (2)

where δ1 and δ2 are the adversarial perturbations for clean
and noisy examples, respectively. Since the regularization
is performed on the output logit, we term it LogitAlign to
differentiate from GradAlign. An advantage of LogitAlign
is that it avoids double backpropagation and thus facilitates
the computation parallelization by simply concatenating
the inputs in the PyTorch implementation. The results in
Figure 1 show that our proposed LogitAlign achieves per-
formance superior to GradAlign in terms of both robustness
performance and required computation.

Is alignment necessary? As shown above, the alignment
on both input gradient and output logit help avoid CO. How-
ever, it remains unclear whether such alignment is really
necessary. Following LogitAlign, we use adversarial ex-
amples from both clean examples and noisy examples in
the outer minimization to update the model weights. By
contrast, we do not use KL divergence to increase their sim-
ilarity but optimize them directly with a combined CE loss

Algorithm 2 NoiseAug-based PGD-N AT for a network fθ
with T epochs, given some radius ε, adversarial step size α
and N PGD steps and a dataset of size M

for t = 1 . . . T do
for i = 1 . . .M do
xi ←− xi + η // Noise augmentation
δ = 0
for j = 1 . . . N do
δ = δ + α · sign(∇δ`(fθ(xi + δ), yi))
δ = max(min(δ, ε),−ε)

end for
θ = θ −∇θ`(fθ(xi + δ), yi) // Outer minimization

end for
end for

as:

(1− λ)l(f(x+ δ1; θ), y) + λl(f(x+ η + δ2; θ), y). (3)

where λ ∈ [0, 1]. As shown in Figure 1, we find that the
increase of λ helps alleviate CO and setting λ to 1 achieves
comparable performance as LogitAlign. Somewhat surpris-
ingly, our empirical results suggest that the alignment is
not absolutely necessary and simply augmenting images
with noise might be sufficient for avoiding CO. Due to its
simplicity as well as competitive performance, we adopt it
as our final regularization method and term it NoiseAug.

4.3. Our proposed method

FGSM + NoiseAug. Compared with GradAlign and
LogitAlign, a major advantage of NoiseAug is that it
causes zero 1 additional overhead. Following the practice
in (Andriushchenko & Flammarion, 2020), our proposed
NoiseAug by default initializes the perturbation as zero, ren-
dering our single-step AT method as FGSM + NoiseAug.
Without any conditional intervention like early stop, our
single-step AT alleviates CO by combining the very first
FGSM AT method with a common noise augmentation.
Our proposed NoiseAug is also easily compatible with the
multiple-step PGD (see results in Table 2. Implementation-
wise, it is no more than a single line of code as shown
in Algorithm 2 based on the classical PGD-N AT pseudo
code. In the following, we mainly focus on the special case
PGD-1, i.e. FGSM, by discussing its relation with two sem-
inal single-step approaches with FGSM + GradAlign (An-
driushchenko & Flammarion, 2020) and FGSM-RS (Wong
et al., 2020).

Relation with prior methods. (a) FGSM+RS and

1Technically, augmenting images with the noise still consumes
computation, however, it is negligible compared with the time to
generate adversarial examples and training the model.
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Method Standard PGD-20-10 PGD-50-10 Time

Standard 94.04±0.19 0.0±0.0 0.0±0.0 1

Multi-step
YOPO-3-5 81.20 36.30 N.A. N.A.
YOPO-5-3 83.99 44.72 N.A. N.A.
AT for free (m = 8) 77.92 ±0.65 45.90±0.98 N.A. N.A.
PGD-10 81.88 ±0.37 N.A. 50.04 ±0.79 ∼ 11
PGD-10 +NoiseAug 79.39 ±0.32 N.A. 50.53 ±0.17 ∼ 11

Single-step

FGSM 85.16 ±1.30 N.A. 0.02 ±0.04 ∼ 2
FGSM-RS 84.32 ±0.08 N.A. 45.10 ±0.56 ∼ 2
FGSM+FLAT 82.27±0.15 47.81±0.17 N.A. ∼ 3.6
FGSM+Checkpoint 89.1±0.0 ±0.27 N.A. 37.8±0.5 ∼ 4
FGSM+GradAlign 81.28±0.27 N.A. 46.90±0.57 ∼ 8
FGSM+NoiseAug(U) 81.04±0.39 N.A. 48.26±0.29 ∼ 2
FGSM+NoiseAug(N ) 80.19±0.10 N.A. 48.43±0.15 ∼ 2

Table 1. Standard accuracy and robustness (%) under the attack of PGD-50-10 for ε = 8/255. For the required training time, we report
the value that is relative to the standard training.

FGSM+NoiseAug resemble each other in the sense that both
adopt random noise for improving FGSM AT. NoiseAug
can be interpreted as separating the δ in FGSM-RS into a
disentangled random noise and FGSM perturbation. This
disentangling might look trivial but yield a significant differ-
ence. First, due to constraint on perturbation magnitude, the
initialized random noise in FGSM-RS can not be set to be
larger than U(−ε, ε). Our results in Table 4 suggest that an
appropriate noise magnitude is critical for achieving high ro-
bustness. Disentangling random noise from the perturbation,
NoiseAug allows to freely choose the optimal noise type or
magnitude by just treating it as data augmentation. Second,
random initialization can yield inferior performance (See
Table 5). It is worth mentioning that (Andriushchenko &
Flammarion, 2020) also shows that removing random ini-
tialization results in a stronger PGD-2 baseline. (b) This
motivates FGSM+GradAlign and our FGSM+NoiseAug to
not use the random initialization as in FGSM-RS. Our work
differs from (Andriushchenko & Flammarion, 2020) mainly
by replacing their GradAlign with our proposed NoiseAug.
Conceptually, GradAlign regularizes input gradient while
NoiseAug regularizes input itself.

5. Experimental setup and results
Experimental setup. Unless mentioned otherwise, we fol-
low (Wong et al., 2020; Andriushchenko & Flammarion,
2020) to train PreAct ResNet18 (He et al., 2016) for 30
epochs with the cyclic learning rates (Smith, 2017) and half-
precision training (Micikevicius et al., 2017). The maximal
learning rate in the cyclic schedule is 0.3. For the pertur-
bation budget, we adopt `∞-norm constraint and set ε to
8/255 or 16/255. Following prior works, we evaluate the
adversarial robustness with the attack of PGD-50-10, i.e.

50 iterations and 10 restarts, where the step size is set to
α = ε/4. For the step size in the training, we follow the
setup in (Andriushchenko & Flammarion, 2020) by setting α
to 1.25ε and ε/2 for single-step (FGSM) and twp-step (PGD-
2) AT, respectively. Note that the training is performed with
half-precision for speeding up but the evaluation is always
conducted with single-precision for fair comparison because
limited numerical precision in the gradient calculation might
overestimate the model robustness.

5.1. Main results

Basic results. Table 1 reports the results for both multi-
step and single-step setups. Specifically, multiple setup
includes PGD-10 (Madry et al., 2018), YOPO (Zhang et al.,
2019), AT for free (Shafahi et al., 2019); single-step setup in-
cludes FGSM (Goodfellow et al., 2015), FGSM-RS (Wong
et al., 2020), FGSM+GradAlign (Andriushchenko & Flam-
marion, 2020), FGSM+Checkpoint (Kim et al., 2020),
FGSM+FLAT (Chen et al., 2021). All the results are either
retrieved from the original works or reproduced with their
official code. Since (Andriushchenko & Flammarion, 2020)
only reports results on a subset of the evaluation dataset, we
reproduce it on the full evaluation dataset. The parameter λ
is set to 0.2 and 2 for ε = 8/255 and ε = 16/255, respec-
tively, as their paper suggested. Among all existing single-
step AT methods, our simple FGSM+NoiseAug performs
the best, bridging its gap with PGD-10. We highlight that
Checkpoint, GradAlign and FLAT all induce extra computa-
tion overhead to different degrees over the baseline FGSM
AT, while our NoiseAug is overhead-free. FGSM-RS is also
overhead-free but it yields less satisfactory performance.
Moreover, it can fail in the following more challenging
setup (ε = 16/255).
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Method Standard PGD-50-10

Standard 94.04±0.19 0.0±0.0.
PGD-10 (α = 2ε/10) 60.28 ±0.50 33.24 ±0.52
PGD-10+GradAlign 60.70 ±0.89 31.28±0.42
PGD-10+NoiseAug 60.62 ±0.41 29.97±0.51
FGSM 73.76 ± 7.40 0.0±0.0
FGSM+GradAlign 58.46 ± 0.22 26.88±1.81
FGSM+NoiseAug 62.51±0.24 28.16±1.01
PGD-2 68.65 ± 5.83 20.50±6.54
PGD-2 + GradAlign (Original) 61.38 ± 0.71 29.80± 0.42
PGD-2 + GradAlign (Reproduce) 63.21 ± 0.82 28.96± 0.40
PGD-2 + NoiseAug 61.55 ± 0.17 29.71± 0.34

Table 2. Standard accuracy and robustness (%) under the attack of
PGD-50-10 for ε = 16/255.

Method AA

FGSM 0.0±0.0.
FGSM + GradAlign 20.56+0.36
FGSM + NoiseAug 21.91+0.32

Table 3. Robustness under AutoAttack with ε = 16/255..

More challenging setup. The main challenge of FGSM
AT is that it suffers from CO when the step size increases,
otherwise the basic FGSM AT can be sufficient. Thus, it is
critical for the proposed methods to also work for a relatively
large ε. Most of the above methods only report the results
for ε = 8/255, while (Andriushchenko & Flammarion,
2020) is the only one that also reports success for ε =
16/255. We argue that it is important for the proposed
methods to also work for this challenging setup. Table 2
reports the comparison of our NoiseAug against GradAlign
with various steps. The basic FGSM or PGD-2 suffers
from CO, leading to poor performance. Both GradAlign
and NoiseAug are found to be effective for alleviating CO,
while NoiseAug consistently outperforms GradAlign in both
single-step and two-step scenarios. PGD-10 performs the
best but at the cost of much more computation resources.
Neither GradAlign nor NoiseAug can further improve PGD-
10, which is expected.

Robustness under AA. To further ensure that
FGSM+NoiseAg do not benefit from gradient mask-
ing, following (Andriushchenko & Flammarion, 2020),
Table 3 report the robustness under AutoAttack (AA). We
observe that FGSM+NoiseAug achieves superior robustness
against AA.

5.2. Ablation study

Noise type and scale. Table 4 reports the influence of noise
type and scale. For uniform noise, the basic magnitude is set
to U(−ε, ε) and ε×N (0, 1) for Gaussian noise and uniform
noise, respectively. Both of them are multiplied by a scale

factor (s). We investigate the scale in the range from 0 to 3.
The results show that both noise types significantly improve
the robustness. Moreover, the standard accuracy decreases
when the noise magnitude is set to too large.
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Figure 2. Robustness under the attack of PGD-10. CutMix,
Coutout, and Mixup help alleviate RO, while NoiseAug has little
benefit for avoiding RO.

6. Why does NoiseAug improve FGSM AT?
6.1. Preliminary guess

As shown above, NoiseAug outperforms other regulariza-
tion methods for improving FGSM AT without suffering
from CO. It is natural to ask why such a simple regular-
ization is so effective to avoid CO. Overfitting is a general
concern in machine learning and data augmentation like
adding noise to the input (Bishop et al., 1995; Reed & Mark-
sII, 1999; Goodfellow et al., 2016; Vincent et al., 2010;
Brownlee, 2019) is the most widely used technique to avoid
such concerns for training DNNs. Thus, a tempting guess
on why NoiseAug improves FGSM AT is as follows:

The benefit comes from the effect of data augmentation, i.e.
more training samples. Here, we roughly divide the com-
mon data augmentation into two types based on their charac-
teristic. The Noise-type augmentation does not change the
image content itself except adding some additional noise,
such as Gaussian noise or Uniform noise. The other type of
augmentation techniques does not involve noise but intro-
duces content change, such as Mixup (Zhang et al., 2017),
Cutout (DeVries & Taylor, 2017), CutMix (Yun et al., 2019).
To facilitate discussion, non-noise augmentation is termed
Content-type.

Does NoiseAug alleviate RO? Figure 2 reports the effect
of both types of augmentations on RO. CutMix, Cutout and
Mixup mitigate the RO, which aligns the finding in (Rebuffi
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Type Scale ε = 8/255 ε = 16/255
Standard PGD-50-10 Standard PGD-50-10

U 0× ε 85.16±1.30 0.02±0.04 73.76±7.4 0.00±0.00
U 1× ε 81.04±0.39 48.26±0.29 66.88±4.65 20.85±11.66
U 2× ε 80.23±0.50 48.41±0.14 62.51±0.24 28.16±1.01
U 3× ε 79.15±0.37 48.22±0.29 60.13±0.29 27.56±0.22

N 0× ε 85.16±1.30 0.02±0.04 73.76±7.4 0.00±0.00
N 1× ε 80.19±0.10 48.43±0.15 62.26±1.05 27.57±0.99
N 2× ε 77.89±1.15 48.07±0.37 58.95±0.41 28.31±0.94
N 3× ε 76.40±0.11 47.39±0.17 55.43±0.10 27.54±0.30

Table 4. Ablation study on noise type and magnitude.

δ init Standard PGD-50-10

ε = 8/255.
zero 80.19±0.10 48.43±0.15

random 82.38±0.02 46.36±0.02

ε = 16/255.
zero 58.96±0.10 28.31±0.17

random 66.25±0.14 25.84±0.04

Table 5. Standard accuracy and robustness under the attack of PGD-
50-10. The results are reported to check whether random initializa-
tion helps improve performance. Random initialization leads to a
higher standard accuracy but at the cost of a lower robustness.

et al., 2021). Moreover, unlabeled data is also found in (Car-
mon et al., 2019; Gowal et al., 2021) to alleviate RO for
improving robustness. The findings support that RO can
be mitigated by creating more training samples. Interest-
ingly, we find that Noise-type brings little benefit to mitigate
RO, suggesting Noise-type might not be as strong as other
Content-type augmentation for generating more training
samples. This is somewhat reasonable because the extra
samples created by Content-type augmentation might be
more diverse than just adding noise. It is worth mentioning
that (Andriushchenko & Flammarion, 2020) also reports
that, like our NoiseAug, their GradAlign does not prevent
RO. This suggests that RO and CO might be less related as
their shared term “overfitting” could imply.

Does Content-type augmentation alleviate RO? The re-
sults in Table 6 show that none of the investigated Content-
type augmentation techniques helps alleviate CO, which
suggests that our preliminary guess is unlikely to be true.
The benefit of NoiseAug to help mitigate CO is not caused
by more training samples. Otherwise, Content-type aug-
mentation techniques are also expected to mitigate CO.

6.2. Local linearity

It has been shown in (Moosavi-Dezfooli et al., 2018; Qin
et al., 2019) that the model robustness can be improved
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Figure 3. Local linearity with FGSM+AT. Among the investigated
four types of Augmentations, only NoiseAug helps increase local
linearity, while CutMix, Cutout, Mixup have no effect in increasing
local linearity.

by regularization methods for increasing the local linear-
ity of a model. Despite various motivations, we find that
there is a consensus to explain the CO from the local lin-
earity perspective (Kim et al., 2020; Andriushchenko &
Flammarion, 2020; Chen et al., 2021). This linearity per-
spective well explains why CO only occurs in single-step
FGSM with a large step size but is not reported in multi-step
PGD. Straightforwardly, CO occurs because FGSM fails
to solve the inner maximization problem which does not
allow a larger step size when the model is locally non-linear
(the term local is characterized by the fact that perturba-
tion is often limited to a small value) (Andriushchenko
& Flammarion, 2020). (Benz et al., 2020) has quanti-
fied such linearity as local input gradient similarity (LIGS):
E(x,y)∼D[cos(∇x`(x, y; θ),∇x`(x + η, y; θ))], where η is
randomly sampled from a certain distribution. The metric
is suggested to be interpreted as follows: it is close to one
when the model is locally linear and its value decreases to
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zero when the model is very non-linear. (Andriushchenko &
Flammarion, 2020) has found that CO often occurs when the
above gradient alignment (similarity) is small, establishing
a correlation between them.

Adopting the same metric in (Benz et al., 2020; An-
driushchenko & Flammarion, 2020), we investigate whether
augmenting images with noise improves local linearity. The
results in Figure 3 show that NoiseAug significantly im-
proves the local linearity. We argue that improved local
linearity might be the reason that our proposed NoiseAug-
ment. To further corroborate this claim, we also test with
other Content-type data augmentations and find that they do
not improve the local linearity. Note that GradAlign also im-
proves FGSM AT through increasing local linearity. On the
one hand, this result suggests that local linearity can be in-
creased by directly regularizing on the input itself, which is
overhead-free and renders the regularizing on input gradient
like GradAlign unnecessary. On the other hand, it also chal-
lenges a claim in (Andriushchenko & Flammarion, 2020)
regarding why random initialization in FGSM-RS helps mit-
igate CO. Specifically, (Andriushchenko & Flammarion,
2020) claims that it “boils down to reducing the average
magnitude of the perturbations”. Note that random noise in
NoiseAug does not decrease the perturbation magnitude but
it still helps avoid CO.
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Figure 4. Local linearity with standard training. Among the investi-
gated four types of Augmentations, only NoiseAug helps increase
local linearity, while CutMix, Cutout, Mixup have no effect in
increasing local linearity.

6.3. Beyond FGSM+NoiseAug

Standard training. We further investigate the influence of
NoiseAug in standard training and the results are reported
in Figure 4. The local linearity decreases when the train-
ing epoch increases, which aligns with the finding in (Benz
et al., 2020; Andriushchenko & Flammarion, 2020). Com-

Method Standard PGD-50-10

Baseline 15.5±0.91 6.82±9.64
Cutout 15.41±0.43 0.085±0.12
Mixup 18.81±1.56 0±0
CutMix 15.46±0.91 0±0

NoiseAug 62.51±0.24 28.16±1.01

Table 6. Standard accuracy and robustness under the attack of PGD-
50-10. Results with various augmentations.

pared with the baseline, NoiseAug improves local linearity
in the whole training process. Before the advent of adver-
sarial attack and defense, adding noise to images has been a
well-established practice in standard training for avoiding
overfitting to the training dataset. In other words, it has been
mainly perceived as one of the many data augmentation
techniques. We advocate that future researchers who study
noise augmentation should also be aware of its effect to
improve local linearity.

7. Closing remark
This work has studied how to improve FGSM AT, especially
in terms of preventing CO. With the motivation to avoid
double backpropagation in GradAlign, our investigation
shows that LogitAlign achieves comparable performance.
More interestingly, we find that simply augmenting images
with noise achieves the best performance. Despite the sim-
plicity, our proposed NoiseAugment outperforms existing
regularization methods by a visible margin yet causes zero
computation overhead. We investigate why NoiseAugment
improves FGSM AT. Specifically, we have performed a com-
prehensive study on CO and RO through the lens of data
augmentation and found that they need different augmenta-
tions. We have shown that in both AT and standard training,
only Noise-type augmentation improves local linearity of
model and thus improve FGSM AT.

Discussion. Overall, we find that the literature has no con-
sensus on why CO occurs. Most identified reasons have
been motivated to justify their proposed method, which is
often not compatible with the success of other methods.
Nonetheless, there is a growing consensus that CO is re-
lated to low local linearity of the model. The observation
that Noise-type augmentation increases local linearity and
prevents CO while Content-type augmentation has no such
effect further corroborates this consensus. Among all the
existing regularization methods to increase local linearity,
NoiseAugment is the most simple yet effective one. Due to
its simplicity, it can be readily extended for more investiga-
tion in future works. We highlight that the key contribution
of this work lies in conveying a message that noise augmen-
tation is all you need for (FGSM) fast AT.
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